MIMIX BROADBAND_{TM}

February 2010 - Rev 18-Feb-10

XUI012-QH

Features

- ★ Optimized for LSB Operation
- X 8 dB Conversion Gain
- 25 dBm OIP3
- 25 dBc LO Suppression Typical
- 15 dB Linear Gain Control
- 4x4mm QFN Package

Mimix Broadband's 5.6-10.5 GHz GaAs MMIC integrated up-converter has a typical LSB conversion gain of 8 dB, and an image rejection of 15 dBc. The device includes an LO Buffer amplifier, double balanced image reject mixer, RF buffer amplifier and variable attenuator. Variable gain regulation can be achieved through bias adjustment with turn-down trajectories optimized to maintain linearity and minimal LO leakage. The device comes in a an RoHS compliant 4x4mm QFN surface mount package offering excellent RF and thermal properties. Typical applications for this device are as an up-converter stage in linear C-Band radio transmit lineups. The device is well suited for Millimeter-wave Point-to-Point Radio, LMDS, SATCOM and VSAT applications.

Absolute Maximum Ratings!

Supply Voltage (Vd)	+7V </td
Gate Bias Voltage (Vg)	-3.0 <vg<0v< td=""></vg<0v<>
Supply Current (LO Buffer)	150 mA
Supply Current (RF Buffer)	150 mA
IF Input Power (IFin)	+15 dBm
LO Input Power (LOin)	+15 dBm
Storage Temperature (Tstg)	-65 to +165 °C
Operating Temperature (Ta)	-40 to +85 °C
Abs. Max. Junction/Channel Temp.	150 °C
Continuous Power Dissipation (Pdiss) at 80 °C	1.5W
Thermal Resistance (Tchannel=150 °C)	50 °C/W
Mouting Temperature	See solder reflow profile
ESD Min Machine Model (MM)	Class A
ESD Min Human Body Model (HBM)	Class 1A
MSL Level	3

⁽¹⁾ Operation of this device above any one of these parameters may cause permanent damage.

Bias Requirements

Parameter	Units	Min.	Тур.	Max.
Drain Bias Voltage LQ Buffer (Vd1)	VDC		+5.0	
Drain Bias Voltage RF Amp Stage 1 (Vd2)	VDC		+5.0	
Drain Bias Voltage RF Amp Stage 2,3 (Vd3)	VDC		+5.0	
Gate Bias Voltage LO Buffer (Vg1)	VDC		-1.0	
Gate Bias Voltage RF Amp Stage 1 (Vg2)	VDC		-1.0	
Gate Bias Voltage RF Amp Stage 2,3 (Vg3)	VDC		-1.0	
Variable Attenuator Control (Vc)	VDC	-2.5	-	0.0
Supply Current LO Buffer (Id1)	mA		80	
Supply Current RF Amp Stage 1 (Id2)	mA		60	
Supply Current RF Amp Stage 2,3 (Id3)	mA		20	

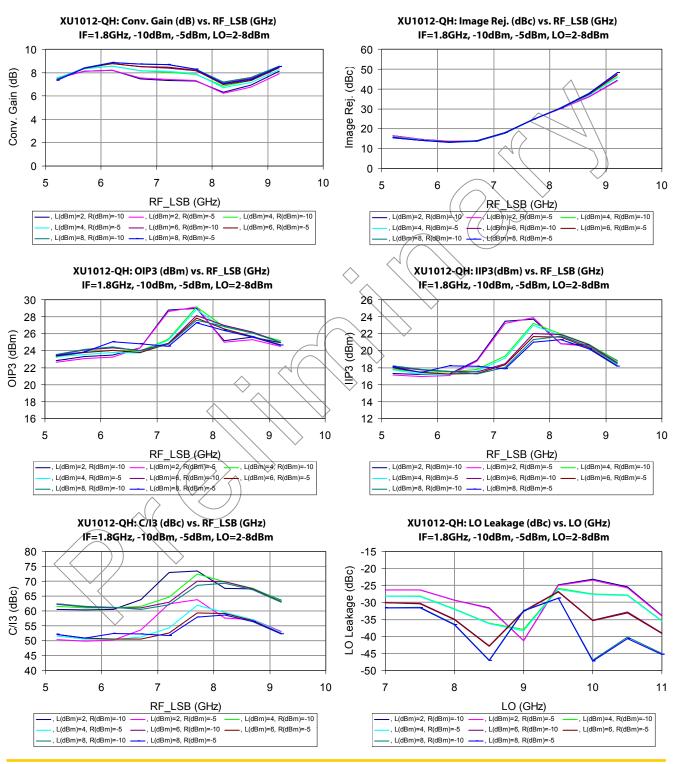
⁽²⁾ Channel temperature directly affects a device's MTTF. Channel temperature should be kept as low as possible to maximize lifetime.

February 2010 - Rev 18-Feb-10

XUI0I2-QH XRoHS

Electrical Characteristics

Parameter	Units	Min.	Тур.	Max.
Frequency Range (RF)	GHz	5.6	-	10.5
Frequency Range (LO)	GHz	7.5	-	12.0
Frequency Range (IF)	dB	DC	1.8	2.5
LO Input Power (PLO)	dBm	3.0	-	9.0
Conversion Gain	dB		8.0	^
Image Rejection	dBc		15.0	_ ^
Input IP3 (IIP3) at Maximum Gain	dBm		19.0	$\langle \rangle$
Output IP3 (OIP3) at Maximum Gain	dBm		25.0	
LO Leakage at RF with 4 dBm Input Power	dBm		-28.0	-21.0
RF Return Loss	dB		10.0	
LO Return Loss	dB		10.0	
IF Return Loss	dB		14.0	/)
Gain Variation	dB		15	/

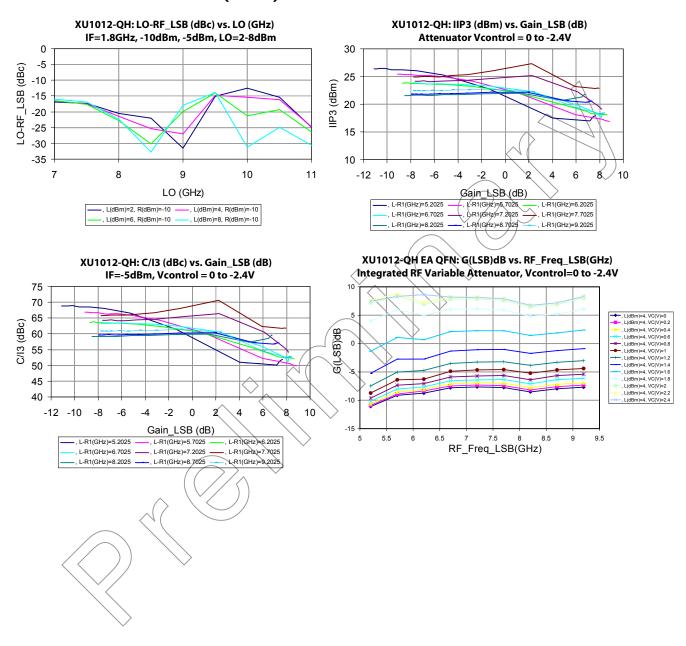


MIMIX BROADBAND_{TM}

February 2010 - Rev 18-Feb-10

XU1012-QH XRoHS

Measured Performance

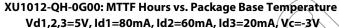

Mimix Broadband, Inc., 10795 Rockley Rd., Houston, Texas 77099 Tel: 281.988.4600 Fax: 281.988.4615 mimixbroadband.com

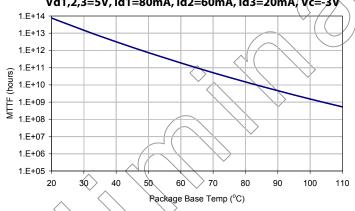
MIMIX BROADBAND_{TM}

February 2010 - Rev 18-Feb-10

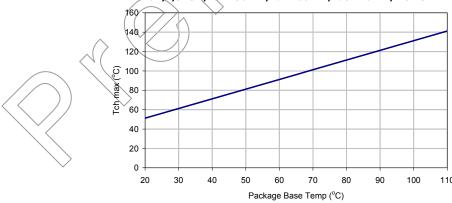
XUI012-QH XRoHS

Measured Performance (cont.)


February 2010 - Rev 18-Feb-10

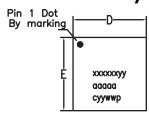

XUI012-QH XRoHS

App Note [1] **Biasing** - As shown in the Pin Designations table, the device is operated by biasing Vd1,Vd2, and Vd3 at 5.0V. The corresponding drain currents are set to 80mA, 60mA and 20mA respectively. It is recommended to use active bias on Vg1,Vg2,Vg3 to keep the currents in Vd1,Vd2, and Vd3 constant in order to maintain the best performance over temperature. Depending on the supply voltages available and the power dissipation constraints, the bias circuits may include a single transistor or a low power operational amplifier, with a low value resistor in series with the drain supply to sense the current. Make sure to sequence the applied voltage to ensure negative gate bias is available before applying the positive drain supply.


Variable gain is achieved by biasing Vc from -2.5V (max. gain) to 0.0V (min. gain).

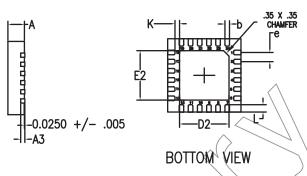
MTTF Graphs

XU1012-QH-0G00:Tch(max) vs. Package Base Temperature Vd1,2,3=5V, Id1=80mA, Id2=60mA, Id3=20mA, Vc=-3V



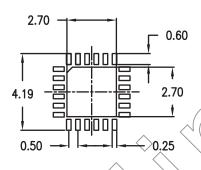
MIMIX BROADBAND_{TM}

February 2010 - Rev 18-Feb-10


XUI012-QH XRoHS

Package Dimensions / Layout

TOP VIEW


MARKINGS: PIN 1/BOM REV/Pb FREE SYM MIMIX PART/MODEL NO. WAFER LOT NUMBER DATE CODE

NOTES:

1. DIMENSIONS ARE IN MM.

RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS

		MIN ((TYP	MAX	
	A (08,0	√ 0.90	1.00	
	A3 (</th <th></th> <th>0.20 REF</th> <th></th>		0.20 REF		
^	b //	0.20	0.25	0.30	
\	K /	0.20	-	ı	
	D/	4.00 BSC			
	E	4.00 BSC			
\	e	0.50			
	Ď2	2.45	2.60	2.75	
	E2	2.45	2.60	2.75	
	L	0.20	0.30	0.40	

VIEWS ARE NOT TO SCALE: USE DIMENSIONS AND TABLE.

Functional Schematic

Pin Designations

RF /VG2				
		\Box	√G3	
IF1		\Box	VD3	
			n/c	
		\Box	VD2	
IF2			VC	
		\Box	/G1	
,	LO VD1			

Pin Number	Pin Name	Pin Function	Nominal Value
2	IF1	IF1 Input	
5	IF2	IF2 Input	
9	LO	LO Input	
12	VD1	Drain 1 Bias	5.0 V, 80 mA
13	VG1	Gate 1 Bias controls drain current in VD1	- 1 V
14	VC	Attenuator Control	- 2.5 V
15	VD2	Drain 2 Bias	5.0 V, 20 mA
17	VD3	Drain 3 Bias	5.0 V, 60 mA
18	VG3	Gate 3 Bias controls drain current in VD3	- 1 V
19	VG2	Gate 2 Bias controls drain current in VD2	- 1 V
22	RF	RF Output	

Page 6 of 7

MIMIX BROADBAND

February 2010 - Rev 18-Feb-10

XU1012-QH XRoHS

Handling and Assembly Information

CAUTION! - Mimix Broadband MMIC Products contain gallium arsenide (GaAs) which can be hazardous to the human body and the environment. For safety, observe the following procedures:

- · Do not ingest.
- Do not alter the form of this product into a gas, powder, or liquid through burning, crushing, or chemical processing as these by-products are dangerous to the human body if inhaled, ingested, or swallowed.
- Observe government laws and company regulations when discarding this product. This product must be discarded in accordance with methods specified by applicable hazardous waste procedures.

Electrostatic Sensitive Device - Observe all necessary precautions when handling.

Life Support Policy - Mimix Broadband's products are not authorized for use as critical components in life support devices or systems without the express written approval of the President and General Counsel of Mimix Broadband. As used herein: (1) Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. (2) A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Package Attachment - This packaged product from Mimix Broadband is provided as a rugged surface mount package compatible with high volume solder installation. Vacuum tools or other suitable pick and place equipment may be used to pick and place this part. Care should be taken to ensure that there are no voids or gaps in the solder connection so that good RF, DC and ground connections are maintained. Voids or gaps can eventually lead not only to RF performance degradation, but reduced reliability and life of the product due to thermal stress.

Typical Reflow Profiles

SnPb	Pb Free
3-4 °C/sec	3-4 °C/sec
60-120 sec @ 140-160 ℃	60-180 sec @ 170-200 °C
60-150 sec	60-150 sec
240°C	265 °C
10-20 sec	10-20 sec
4-6°C/sec	4-6 °C/sec
	3-4 °C/sec 60-120 sec @ 140-160 °C 60-150 sec 240 °C

Mimix Lead-Free RoHS Compliant Program - Mimix has an active program in place to meet customer and governmental requirements for eliminating lead (Pb) and other environmentally hazardous materials from our products. All Mimix RoHS compliant components are form, fit and functional replacements for their non-RoHS equivalents. Lead plating of our RoHS compliant parts is 100% matte tin (Sn) over copper alloy and is backwards compatible with current standard SnPb low-temperature reflow processes as well as higher temperature (260°C reflow) "Pb Free" processes.

Part Number for Ordering

XU1012-QH-0G00 XU1012-QH-0G0T XU1012-OH-EV1

Description

Matte Tin plated RoHS compliant 4x4 24L QFN surface mount package in bulk quantity Matte Tin plated RoHS compliant 4x4 24L QFN surface mount package in tape and reel XU1012-OH evaluation board

Proper ESD procedures should be followed when handling this device.

Page 7 of 7